

Description of the Communication protocol

for Series 30 and Series40 pressure transmitters from KELLER Class.Group = 5.20

Version 3.1

1	Introduction	3
2	Bit transfer layer (physical layer)	3
2.1	Introduction	
2.2	Characteristic	
2.3	RS485 half-duplex details	
	'	
	Data-link layer	
3.1	Transmission format for the serial interface	5
3.2	Format of a message	
3.3	Principle of message interchange	7
4	MODBUS communication	9
4.1	MODBUS Communication Basics	
4.2	Using MODBUS with KELLER products	
4.3	Description of MODBUS functions	
4.4	Modbus Communication Examples	
4.5	Function 3: MODBUS Register Read	
4.6	Function 6: MODBUS Single Register Write	
4.7	Function 8: MODBUS Echo Test	
4.8	Function 16: MODBUS Register WRITE	
4.9	MODBUS Register Map	13
4.10	Device Operation Command List	17
5	Description of Keller bus functions	18
5.1	Example: read pressure value with exception handling	
5.2	Function 30: Read coefficient	
5.3	Function 31: Write coefficient	
5.4	Function 32: Read configuration	
5.5	Function 33: Write configuration	
5.6	Function 48 : Initialise and release	
5.7	Function 66: Write and read new device address	25
5.8	Function 69: Read serial number	25
5.9	Function 73: Read value of a channel (floating point)	26
5.10	`	
5.11		
5.12	Punction 100 : Read configuration	29
,	Ammandia	20
	Appendix	
6.1	Interface converter	
6.2 6.3	floating-point format IEEE754	
6.4	Error handling and recognition Calculation of the CRC16 checksum	
6.5	Changes	
6.6	Software versions	
6.7	Support	

1 Introduction

This document describes the communications protocol for the Series 30 digital pressure transmitters from KELLER Druckmesstechnik. In addition to these transmitters, other devices such as data loggers or manometers are also offered. These products are distinguished by the designation CLASS. Within this device class, the individual device groups are differentiated by the designation GROUP. All Series 30 pressure transmitters bear the CLASS designation 5.

The software version number consists of following components:

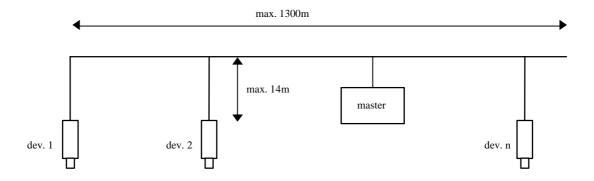
short-designator:	Class	Group	Year Week						
	Devic	e group	SW-Version						
Series 30 and 40	5	20	SW-Version: release year	SW-Version: release week					

In this document, the software version is defined by Class.Group-Year.Week, e.g. 5.20-5.50.

The protocol itself is based on MODBUS, but incorporates optimised functions for the device, these functions are called Keller bus functions. However, minimum (only fct3) MODBUS RTU functionality is implemented for devices CLASS.GROUP = 5.20 with firmware 2.40 and newer. Full MODBUS support is provided from firmware 5.20-10.XX on.

See Appendix for an overview of the differnet versions.

2 Bit transfer layer (physical layer)


2.1 Introduction

The physical connection is provided by the RS485 serial interface. This guarantees good interference immunity and enables a flexible bus structure, i.e. several devices can be administrated as slaves by a single master. In order to minimise the scope of cabling, the RS485 is used in **half-duplex** mode. This means that 2 wires are required for communications and 2 wires for power infeed.

2.2 Characteristic

In order to operate several devices at one serial interface, they are simply all connected in parallel (RS485A, RS485B, GND and +Vcc). Before incorporating the devices into the bus, each device must be programmed with a different address.

It is possible to configure a network up to a length of 1300 metres with a maximum of 128 devices. Each riser cable may be up to 14 m in length. The employed cable should correspond to specification EIA RS485.

Communication protocol Serie30 Page 3/34

2.3 RS485 half-duplex details

To ensure best possible operation in an industrial environment Keller uses RS485 driver with tailored characteristics. To provide compatibility and get full advantage the bus driver of the master device has to support these specifications.

slew rate limited In order to avoid oscillations and interference the signal slew rate is limited. This measure allows also

usage of standard cables or non-standard topologies (e.g. level detectors or branch lines >> 14m). The more, termination is less critical and has not to be implemented compulsory at the line ends, a feature

important for level detectors.

fail safe Defined signal level – even in short or open circuit case. This is very important for half-duplex operation if

all devices are in reception mode - here the line is open in case that no bias resistors are implemented at

the master.

1/8 unit load Input impedance is lower than defined by the RS485 standard, this allows connecting up to 128 devices to

the bus.

Termination

Layout: between A and B at the beginning and the end of the transmission line

Value: the same as the line-impedance. Typ.: 1200hm.

In case of a fail-safe master driver (interface converter to the PC) and a noise-free environment the termination resistor are not mandatory. To reduce current peaks the resistor value can be chosen higher (1kOhm) or omitted (while transmitting the current needed for 2x120Ohm is about 50mA).

To ensure a stable communication at least one terminal resistor is necessary (mostly included in the master-RS485 driver)! One can do without a terminal resistor, if the environment is free of interference and the cable is held short (a few meters).

If the transmitter has additionally an analogue 4...20mA (two wire) output which will be used simultaneously with the serial communication, it could be useful to communicate without terminal resistor. Otherwise the analogue current signal will have heavy interferences. See application note: *App. Note S30X-011 RS485 and current loop.pdf*

The transmitters will never have a terminal resistor built in internally.

Bias-resistors

To keep up having always defined voltages one can switch pull-up respectively pull-down resistors to the transmitter: From A to +5V and from B to GND. This is necessary when such RS485 drivers are in use which are not fail-save. This is not necessary for our products when the master is fail-safe.

Common Mode

The common-mode of the data circuit line is +12 / -7V down to GND. It is essential to keep up with this. Always connect the GND of the RS485 converter of the master with GND of the transmitter!

Definition of data circuit line assignments

signal	Designation of Keller and divers manufacturers	Designation of the EIA Standard				
inverted (-)	В	A				
non-inverted (+)	A	В				

Further information on RS485: http://www.maxim-ic.com/MaximProducts/Interface/rs-485.htm

3 Data-link layer

This section describes how data interchange is effected on this bus. The data and their check and control structures are grouped together to form messages. These constitute the smallest communication unit, i.e. only messages can be exchanged between the devices. As a half-duplex protocol is in use here, only one device can use the bus as a transmitter at any one time. All other devices are then in receive mode. The master takes the form of a PC or microcontroller, for example, and the devices are the slaves. Each message exchange takes place under the control of the master. The message contains the address for the receiving slave.

This results in the following 2 options for data interchange:

a) Broadcasting This mode of communication enables the master to transmit a message to all slaves

simultaneously. The master does not receive a reply, however, and is thus unable to check whether

the message has been correctly received by every slave.

b) Data interchange This mode of communication enables the master to communicate with a single slave. This normally

involves the transmission of two messages: the master transmits a request and the slave responds to this request. Only the master is permitted to request a response. The request is received by every slave, but only the selected slave responds. The response must be received within a stipulated time,

otherwise the master will assess the attempt as failed and must transmit the request again.

3.1 Transmission format for the serial interface

The data are transmitted serially via the bus. The following format applies:

- 1 start bit
- 8 data bits (the least significant bit first)
- 1 stop bit
- no parity (default)
- 9600 baud (default) or 115'200 Baud

This results in 10 bits (11 bits with active parity bit) per transmission byte.

3.2 Format of a message

3.2.1 Format of the message sent by the master

Note on the presentation of messages: Each box presents 1 data byte consisting of 8 bits, unless otherwise stated.

Each message sent by the master possesses the following format:

DevAddr	0 Function	n byte parameters	KELLER:CRC16_H	KELLER:CRC16_L		
	code	(optional)	MODBUS:CRC16_L	MODBUS:CRC16_H		

DevAddr: Address of the device.

Address 0 is reserved for broadcasting.

Addresses 1...249 can be used for bus mode.

Address 250 is transparent and reserved for non-bus mode. Every device can be contacted with this address.

Addresses 251...255 are reserved for subsequent developments.

Function code: Function number

A function is selected and executed by the device via the function number. The function number is encoded in 7 bits. Bit 7 is always 0. The functions are described further below.

- Parameters: The parameters required by the function (n = 0 .. 6, according to function)
- CRC16: 16-bit checksum

These two check bytes serve to verify the integrity of the received data. If an error is established, the entire message will be discarded. The principle employed for CRC16 calculation is described in the appendix. The CRC16 standard is applied here.

Note: The length of a message from the master is at least 4 bytes.

3.2.2 Format of the message sent by the slave

A message transmitted by the slave possesses the following format:

DevAddr	x Fun	ction :	n byte data	KELLER:CRC16_H	KELLER:CRC16_L
	code		(optional)	MODBUS:CRC16_L	MODBUS:CRC16_H

- DevAddr: Address of the device. This address corresponds to the address of the responding device.
- Function code:

The function number is identical to the function number sent by the master. If the most significant bit is X = 0, this indicates that the function has been executed correctly. If bit X = 1, an exception error has occurred.

- Data: Any data requested via the function follow here.
- CRC16: See above.

Note: A message from the slave has a minimum length of 5 bytes, and a maximum length of 10 bytes.

3.3 Principle of message interchange

3.3.1 General rules

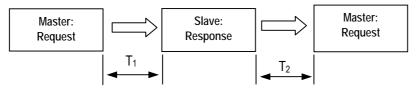
- An address may only be allocated to one device connected to the bus. If two devices on the bus have the same address, both will respond, leading to a conflict.
- Every data interchange is initiated by the master. This means that a device may only transmit data if requested to do so by the master.
- A message consists of several bytes. These bytes are transmitted without any interruption.

Maximal time between two bytes:

1.5ms @ 9600 baud (1.5 byte length)

0.20 ms @ 115200 baud (2.3 byte length)

If the time beween two bytes exceed the specified time, the slave ignores the received data, because of wrong message length or CRC value. In that case the answer is omitted.


• The addressed device must respond within time T₁ otherwise the message will be invalid.

Bit frame:

·	ST	D0	D1	D2	D3	D4	D5	D6	D7	SP	ST	D0	•••	D6	D7	SP

ST: start bit, SP: stop bit. A parity bit (if active) is inserted before the SP, D0 .. D7: 8 data bits

Message frame:

Response times:

T₁: Time between receipt of inquiry and beginning of response.

Min. 1ms to max. 100ms for all functions and devices.

Most functions (except those with EEPROM access like information values): T₁ min. 1.2... 3ms

T₂: Time to ready-to-receive state for the slave:

min 1 ms @ 9600 baud (1 byte length)

min 0.10 ms @ 115200 baud (1 byte length)

3.3.2 Treatment of errors

2 types of errors may occur during the interchange of messages between master and slave: transmission errors and exception errors.

3.3.2.1 Transmission errors

These errors are primarily accountable to line faults. The message format is incorrect. The following problems are possible:

- A received message is too short. → e.g. too much of time gap in frame between the bytes.
- A message is longer than the internal transmission buffer permits.
- The word length cannot be interpreted correctly.
- The CRC16 checksum is incorrect.

In these cases the slave denies the request and will therefore not reply. This will lead to a timeout at the master. \rightarrow the request has to be repeated again.

In response to a transmission error, all received data are ignored. The slave remains in receive mode while the master is required to initiate a new data interchange.

3.3.2.2 Exception errors

The message has been received correctly (no transmission error has occurred), but the transmitted function number and/or the parameters are invalid. The slave responds with an exception error, unless the message has been received in broadcasting mode

The message transmitted as a response by the slave has the following format:

DevAddr	1	Function	Exception	KELLER:CRC16_H	KELLER:CRC16_L		
		code	code	MODBUS:CRC16_L	MODBUS:CRC16_H		

4 types of exception errors are defined :

•	non-implemented function	1
•	incorrect parameters	2
•	erroneous data	3
•	initialisation (only KELLER bus)	32

Exception error 32 occurs when the device is started up anew and initialisation has not been carried out. This happens every time the device is connected anew after a break in the power supply.

4 MODBUS communication

4.1 MODBUS Communication Basics

Mode: RTU Mode (ASCII is not supported)
Coding System: 8-bit binary, hexadecimal 0-9, A-F

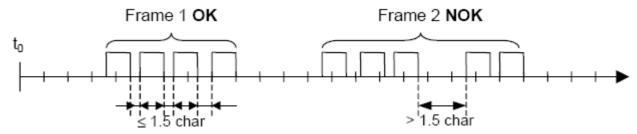
Two hexadecimal characters(bytes) contained in each 8-bit field of the message

Bits per Byte: 1 start bit

8 data bits, least significant bit sent first

1 parity bit: none, even, odd (programmable) – default: none (Keller devices)

1 stop bit


Error Check Field: 2 Byte Cyclical Redundancy Check (CRC)

Baudrate: programmable 9'600 or 115'200

Frame Layout:

> 3.5 char (byte)	8 bit	8 bit fkt code	n x 8bit	16 bit	> 3.5 char (byte)
start delimiter	addr		data	CRC	end delimiter
			(max n = 252)	LOW / HIGH	

The entire message frame must be transmitted as a continuous stream of characters. If a silent interval of more than 1.5 character times occurs between two characters, the message frame is declared incomplete and should be discarded by the receiver.

Bus Addressing:

Unicast addresses: each slave has an address between 1 and 247.

Broadcast addresses: address 0 is used for broadcast frames, the slave accepts the command but must not generate an answer.

Special addresses: addresses 248 – 255 are reserved. The address 250 is used for non-bus (point-to-point) communication to address a slave with unspecified or unknown address (not MODBUS standard).

Function Code:

The 8-bit value function code describes the operation that is performed on the slave. Implemented MODBUS functions are described in the following chapter.

4.2 Using MODBUS with KELLER products

Both protocols are active. For MODBUS only a subset of the MODBUS functionality is implemented and the implemented MODBUS function codes are not used in the KELLER-protocol. Please note, that the responses are different for both protocols.

Furthermore note that for MODBUS communication NO initialization is required to be performed before any other command.

Attention: The Error Check Field byte alignment differs.

		, ,
	Modbus	KELLER-Protokoll
CRC-16	L:H	H:L

4.3 Description of MODBUS functions

This section describes the MODBUS functions supported by Series 30 transmitters (device Class. Group = 5.20)

Overview:

F3: Read registers on MODBUS address space

F6: Write single register on MODBUS address space

F8: MODBUS Echo function

F16: Write multiple registers on MODBUS address space

Versions overview

The Table below gives you an overwiew which Firmware-Version supports which MODBUS functions:

Version	F3 float values	F3 float values	F3 int 16bit values	F3 int 32bit values	F3 Information&	F6	F8,
	0x00000x000A	0x01000x0106	0x0010 0x0015	0x0020 0x002A	Configuration		F16
5.20-5.50	Yes	No	Yes	No	No	No	No
5.20-10.40	Yes	Yes	No	No	Yes	No	Yes
5.20-12.28	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: compatible for all versions to read prozess values (CH0..TOB2): F3 float, reg 0x0000..0x000A

4.4 Modbus Communication Examples

Read	address	req	request							response									received value
P1	1	1	3	0	2	0	2	101	203	1	3	4	63	117	240	123	227	222	0.960701 bar
P2	1	1	3	0	4	0	2	133	202	1	3	4	63	118	6	224	21	213	0.961042 bar
TOB1	1	1	3	0	8	0	2	69	201	1	3	4	65	181	192	121	110	11	22.719 °C
P1, TOB1	1	1	3	1	0	0	4	69	245	1	3	8	63	117	227	210	65	182	0.960508 bar
										28	3:	2 1	L60	119					22.7637 °C

4.5 Function 3: MODBUS Register Read

Read a number of subsequent registers in the MODBUS address space starting with StAdd. Note, that the data returned has to be interpreted according the definitions in "4.9 MODBUS Register Map".

- Function is implemented in devices Class. Group-Version = 5.20-2.40 and later
- The maximal number of registers read in one cycle is limited to:
 - 4 registers for versions Class. Group-Version = 5.20-10.40 and later
 - 2 registers for earlier versions than Class. Group-Version = 5.20-10.40
- Byte-count of the answer will be an even number (1 register = 2 bytes)
- Double sized prozess values (CH0, P1, P2, T, TOB1 and TOB2) must be read in one request.
- Returns NaN (float) or ovl (integer) in case of a inactive channel or a error in the channel

Request:

٠,	cquest.										
	DevAddr	0x03	StAdd H	StAdd L	# Reg H	# Reg L	CRC16_L	CRC16_H			
R	Response:										
	DevAddr	0x03	# Bytes	Data H	Data L		Data L	CRC16_L	CRC16_H		
E	Error:										
	DevAddr	0x83	Error	CRC16_L	CRC16_H						

Error codes:

- 2 Illegal data address:
 - Wrong starting-address or wrong number of registers
 - Start-address not defined, register exceeding defined range return 0x0000
- 3 Illegal data value:
 - Quantity of requested registers out of bound
 - Must be <= 4 for devices Class. Group-Version = 5.20-10.XXand later
 - Must be <= 2 for devices Class. Group-Version = 5.20-2.50

4.6 Function 6: MODBUS Single Register Write

This function has the same functionality as F16, but writes only 1 register.

- Function is implemented in devices Class. Group-Version = 5.20-12.XX and later
- A register contains 2 bytes (16 bit).
- Use this function for single configuration steps, cause the returned error is easily distinguishable from other register writes.
- Note that single register operations are not allowed in the address ranges 0x03XX and 0xFFXX.

Request:

DevAddr	0x06	StAdd H	StAdd L	Data H	Data L	CRC16_L	CRC16_H
---------	------	---------	---------	--------	--------	---------	---------

Response:

DevAddr	0x06	StAdd H	StAdd L	Data H	Data L	CRC16_L	CRC16_H

Error:

ļ	DevAddr	0x86	Error	CRC16_L	CRC16_H

Error codes:

- 2 Illegal data address
 - address not accessible by function 6
 - Start-address not defined (for writing)
- 3 Illegal data value
 - frame length incorrect
- 4 Slave Device Failure
 - The data written is outside the defined data range

4.7 Function 8: MODBUS Echo Test

This function may be used to perform a quick line check. It just returns the data received.

- Function is implemented in devices Class. Group-Version = 5.20-10.XX and later
- Data may be any 2 byte value

Request:

	DevAddr	0x08	0x00	0x00	Data H	Data L	CRC16_L	CRC16_H
								_
П								

17	esponse.							
	DevAddr	0x08	0x00	0x00	Data H	Data L	CRC16_L	CRC16_H

Error:

-:	101.	_	_	_	
	DevAddr	0x88	Error	CRC16_L	CRC16_H

Error codes:

- 3 Illegal data value:
 - The data following the function code was not the fixed data (0x00, 0x00).

4.8 Function 16: MODBUS Register WRITE

Write a number of subsequent registers on the MODBUS address space starting with StAdd.

- Function is implemented in devices Class. Group-Version = 5.20-10.XX and later
- A register contains 2 bytes (16 bit).
- The number of registers written in one cycle is limited to 2 (0x02) for Class. Group-Version = 5.20-10.XX
- Byte-count of the answer will be an even number (1 register = 2 bytes).
- Addresses above 0xFF00 are virtual command registers that simply execute a task on the slave. Please refer to chapter "4.9 MODBUS Register Map" for more information.
- Writing float values (0x03XX and 0xFFXX) always requires 2 data registers.
- #Reg in the response declares the number of actually written registers (in case an error occurs, this amount is not the same as in the request)

Request:

DevAddr	0x10	StAdd H	StAdd L	# Reg H	# Reg L	# Bytes	Data H	Data L
•••	Data H	Data L	CRC16 L	CRC16 H				

Response:

DevAddr	0x10	StAdd H	StAdd L	# Reg H	# Reg L	CRC16_L	CRC16_H
---------	------	---------	---------	---------	---------	---------	---------

Error:

De	evAddr	0x90	Error	CRC16_L	CRC16_H
----	--------	------	-------	---------	---------

Error codes:

- 2 Illegal data address:
 - Undefined starting-address or wrong number of registers
 - Start-address not defined (for writing)
- 3 Illegal data value:
 - The amount of data is out of bound
 - Byte-Count is not twice the # Reg.
- 4 Slave Device Failure:
 - Attempted to write into a protected register
 - The data written is outside the defined data range

4.9 MODBUS Register Map

Process Value Read Range (0x000x) 32bit floating point:

- compatible with *Class. Group-Version* = 5.20-5.50 and later
- A Channel must be read in one cycle. Odd start address (StAdd) returns exception2
- format is float according to chapter "6.2 floating-point format IEEE754",
 5.20-5.50: 2Registers. Errors: Inactive Channel returns exception2, ovl or uvl returns exception3
 5.20-10.40 and later: 2 or 4Registers. Errors: Inactive Channel returns NaN, over-/underflow is represented by +/-infinity

• corresponding functionality to Keller Bus functions F73

MODBUS StAdd	Channel	Read/	Unit	Description
(0xHILO)		Write		
0x0000	CH0	R		Calculated value (customer specific format) HWord
	CHO	IX.		Calculated value (customer specific format) LWord
0x0002	P1	R	bar	Pressure of sensor1 HWord
	Г	- 1	Dai	Pressure of sensor1 LWord
0x0004	0x0004 P2 R bar	har	Pressure of sensor2 HWord	
		I.	Dai	Pressure of sensor2 LWord
0x0006	т	R	°C	Temperature HWord
	'	I.	C	Temperature LWord
0x0008	TOB1	R	°C	Temperature of sensor1 HWord
	1061	I.	C	Temperature of sensor1 LWord
0x000A	TOB2	R	°C	Temperature of sensor2 HWord
	TOBZ	K	C	Temperature of sensor2 LWord

Process Value Read Range (0x001x) 16bit integer:

- compatible with *Class.Group-Version* = 5.20-5.50 and later, but not 5.20-10.40
- format is 2 byte signed integer
- All Values are multiplied by 100. Numeric range: +/- 32700, max. pressure +/- 327bar.
 Use 32bit Register for higher resolution and range.
- Amount of Registers: 5.20-5.50: 1Reg, Version 5.20-12.28 and later: 1 .. 4Reg.

		0		J,	5
M	ODBUS StAdd	Channel	Read/	Unit	Description
	(0xHILO)		Write		
	0x0010	CH0	R	1/100	Calculated value (customer specific format)
	0x0011	P1	R	1/100 bar	Pressure of sensor1
	0x0012	P2	R	1/100 bar	Pressure of sensor2
	0x0013	T	R	1/100 °C	Temperature
	0x0014	TOB1	R	1/100 °C	Temperature of sensor1
	0x0015	TOB2	R	1/100 °C	Temperature of sensor2

Error-Handling:

Channel not active or error (NaN): value = 32767 (version 5.50: exception2) Overflow or value > 327.0 : value = 32767 (Version 5.50: exception 3) underflow or value < -327.0: value = -32768 (Version 5.50: exception3)

Communication protocol Serie30 Page 13/34

Process Value Read Range (0x002x) 32bit integer:

- compatible with *Class.Group-Version* = 5.20-12.28 and later
- A Channel must be read in one cycle. Odd start address (StAdd) returns exception2
- format is 4 byte signed integer
- Overflow returns "2147483647", an underflow "-2147483648"
- Error in a Channel or Channel not active returns "2147483647"
- corresponding functionality to Keller Bus functions F74

MODBUS StAdd	Channel	Read/	Unit	Description
(0xHILO)		Write		
0x0020	CH0	R	10-5	Calculated value (customer specific format) HWord
	CHO	IX	10	Calculated value (customer specific format) LWord
0x0022	P1	R	Pa (10 ⁻⁵ bar)	Pressure of sensor1 HWord
		IX	i a (io bai)	Pressure of sensor1 LWord
0x0024	P2	R	Pa (10 ⁻⁵ bar)	Pressure of sensor2 HWord
	ΓZ	K	ra (10 bai)	Pressure of sensor2 LWord
0x0026	т	R	1/100 °C	Temperature HWord
	'	IX	1/100 C	Temperature LWord
0x0028	TOB1	R	1/100 °C	Temperature of sensor1 HWord
	- IOBI K		1/100 C	Temperature of sensor1 LWord
0x002A	TOB2	R	1/100 °C	Temperature of sensor2 HWord
	TOBZ	11	1/100 C	Temperature of sensor2 LWord

Remark: Pressure unit is Pascal (10⁻⁵ bar) instead of bar

Process Value Read Range (0x0100) 32bit flaoting point:

• compatible with *Class.Group-Version* = 5.20-10.XX and later

• Same as 0x0000 .. 0x000B but different mapping for accessing data in one cycle (e.g. P1 and TOB1)

MODBUS StAdd	Channel	Read/	Unit	Description
(0xHILO)		Write		
0x0100	P1	R	bar	Pressure of sensor1 [bar] HWord
	ГІ	K	Dai	Pressure of sensor1 [bar] LWord
0x0102	TOB1	R	°C	Temperature of sensor1 [°C HWord
	ТОВТ	K	C	Temperature of sensor1 [°C] LWord
0x0104	P2	R	bar	Pressure of sensor2 [bar] HWord
	ГZ	K	Dai	Pressure of sensor2 [bar] LWord
0x0106	TOB2	R	°C	Temperature of sensor2 [°C] HWord
	TOBZ	1		Temperature of sensor2 [°C] LWord

Communication protocol Serie30 Page 14/34

Device Configuration Range (0x02xx):

- compatible with *Class.Group-Version* = 5.20-10.XX and later
- all registers contain 16 bit [15..8][7..0] (1 register), high byte = 0x00 if not specified differently corresponding functionality to Keller Bus functions F32, F33, F66 and F69

MODBUS StAdd	Read/	Reg.	DESCRIPTION
(0xHILO)	Write	Name	DESORII HON
0x0200	R/W	UART	UART settings:
0.0200	10/11	OAITI	Bit 0 3: Baud rate
			Baud rate Value = 0: 9'600baud
			Baud rate Value = 1: 115'200baud
			Bit 4: Parity selection. 0: no Parity, 1: Parity enable
			Bit 5: Parity mode. 0: odd parity, 1: even parity
0x0201	R	FILTER_ORG	Factory setting for filter value.
0x0201	R	S/N-H	Serial Number High Bytes (16bit)
0x0202	R	S/N-L	Serial Number Low Bytes (16Bit)
0x0203	R	CFG_P	Active pressure channels (high priority): Bit 1: P1, Bit 2: P2
	R		
0x0205	K	CFG_T	Active Temperature channels (low priority): Bit 3: T (Temperature sensor)
			Bit 4: TOB1 (Temperature of pressure sensor P1)
0.0000	DAM	050 0110	Bit 5: TOB2 (Temperature of pressure sensor P2)
0x0206	R/W	CFG_CH0	CH0 (Calculated channel): Byte value (decimal): Device has to be restarted after change.
			0: inactive
			1: Difference P1 – P2
			2: Difference P2 – P1
			3: Square root calculation sqrt(P1)
			4: Square root calculation sqrt(P2)
			5: Square root calculation sqrt(P1 – P2)
			6: Square root calculation sqrt(P2 – P1)
			11: Absolute value = P1
			12: Absolute value = P1 – P2
			13: Line pressure compensated differential pressure (only at factory, add. parameters)
			14: straight line curve fitting of P1 (only if P2 is not active, 5.20-12.24 and earlier)
0x0207	R/W	CNT_T	Temperature measurement interval in seconds.
0x0208	R/W	CNT_TCOMP	Value of Bit 3 0 (LowNibble): CNT_TCOMP
			After CNT_T * CNT_TCOMP seconds a temperature compensation will be performed.
		LP_FILT	Value of Bit 7 4 (HighNibble):
			Low pass filter for P1 and P2. LowpassFilter = 2 [B7 B4]
			The formula for the low pass filter is given as:
			$P_{n+1} = \frac{(2^{LowpassFilter} - 1) * P_{n-1} + P_n}{2^{LowpassFilter}}$
			$P_{n+1} = \frac{(2 - 1)^{n-1} + 1}{2 LowpassFilter}$
			2
			where:
			P _{n+1} : new filtered value, P _n : actual measured value, P _{n-1} : old filtered value
0x0209	R	P-Mode	Version 5.20-12.28 and later: Type of sensor and calibration 0: PR (relative), 1: PA (absolute),
	5		2: PAA (absolute). Earlier Version: Not used (return 0x0000)
0x020A	R/W	FILT_CTRL	Filter setting for one conversion:
			Bit 0: Adaptive filter for P1 and P2 (on / off)
			Bit 1: Low pass filter for T, TOB1 and TOB2 (on / off)
			Bit 2 Bit 4: Over sampling ration OSR = 2^(8+Bit 2 4)
			Bit 5 6: Amount of samples per averaging: 03 = 1, 2, 4 or 8 values.
			Factory settings see FILTER_ORG.
0x020B	R	DAC_CTRL	Analogue output:
			Bit 0: Milli Amperes output (4 20mA)
			Bit 1: Voltage output
			Bit 4 = 1: P1 is linked to the analogue output
			Bit 4 = 0: CH0 is linked to the analogue output
0x020C	R	STATUS	Status, the same as the STAT byte from F73.
0x020D	R/W	DEV_ADDR	Device Address
0x020E	R	Class:Group	* Firmware-Version, 16Bit (only Version 5.20-12.28 and later)
0x020F	R	Year:Week	* Firmware-Version, 16Bit (only Verion 5.20-12.28 and later)

Device Coefficient Range (0x03xx):

- compatible with *Class.Group-Version* = 5.20-10.XX and later
- address is calculated by (0x0300 + 2*{Coeff-No.}). {Coeff-No.} is defined in Function 30.
- read only an even number of registers
- format is float according to chapter "6.2 floating-point format IEEE754"
- Writing only allowed with F16 (write cycle with 2 registers)
- corresponding functionality to Keller Bus functions F30 and F31

MODBUS StAdd	Read/	Coeff-	Unit	DESCRIPTION
(0xHILO)	Write	No.		
0x036A	R/W	53	bar	Threshold value of the root function (must be > 0 if sqrt function is used)
0x0380	R/W	64	bar	Offset of pressure sensor P1, default = 0.0
0x0382	R/W	65		Gain factor of pressure sensor P1, default = 1.0
0x0384	R/W	66	bar	Offset of pressure sensor P2, default = 0.0
0x0386	R/W	67		Gain factor of pressure sensor P2, default = 1.0
0x0388	R/W	68		Offset of analogue output
0x038A	R/W	69		Gain factor of analogue output
0x038C	R/W	70		Offset of CH0, default = 0.0
0x038E	R/W	71		Gain factor of CH0, default = 1.0
0x03A0	R	80	bar	Minimum pressure of sensor P1
0x03A2	R	81	bar	Maximum pressure of sensor P1
0x03A4	R	82	bar	Minimum pressure of sensor P2
0x03A6	R	83	bar	Maximum pressure of sensor P2
0x03A8	R	84	°C	Minimum temperature of temperature sensor
0x03AA	R	85	°C	Maximum temperature of temperature sensor
0x03AC	R	86	°C	Minimum temperature of sensor P1
0x03AE	R	87	°C	Maximum temperature of sensor P1
0x03B0	R	88	ပ္	Minimum temperature of sensor P2
0x03B2	R	89	°C	Maximum temperature of sensor P2
0x03B4	R	90		Minimum value of channel CH0
0x03B6	R	91		Maximum value of channel CH0
0x03B8	R	92	bar	Pressure for minimum analogue signal *
0x03BA	R	93	bar	Pressure for maximum analogue signal *
0x03BC	R	94	mA, V	Minimum analogue signal*,**
0x03BE	R	95	mA, V	Maximum analogue signal*,**

^{*} Required for scaling the analogue output (see below)

Communication protocol Serie30 Page 16/34

^{**}The information for No. 94 and No. 95 may be in mA or V, according to whether the device possesses a voltage output or a current output (see DAC_CTRL).

4.10 Device Operation Command List

- compatible with *Class.Group-Version* = 5.20-10.XX and later
- Writing only allowed with F16 (write cycle with 2 registers)
- Only one command per request
- This address range is NOT readable
- corresponding functionality to Keller Bus function F95
- Some bytes of the message are fixed, see following frame layout:

Request:

DevAddr	0x10	0xFF	StAdd L	0×00	0×02	0×04	В3	В2
<u> </u>								I .
В1	в0	CRC16 L	CRC16 H					

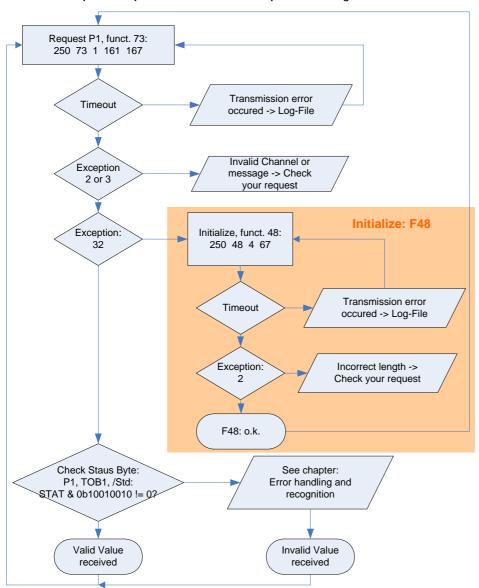
Response:

DevAddr	0x10	0xff	StAdd L	0x00	0×02	CRC16_L	CRC16_H	
---------	------	------	---------	------	---------------	---------	---------	--

MODBUS StAdd	Read/	Reg.	DESCRIPTION
(0xHILO)	Write	Name	
0xFF00	W	Set Zero P1	The zero point value from P1 (Coeff-No. 64) is calculated, that the current measured value equals the floating point number specified.
0xFF02	W	Reset Zero P1	Zero Point Value from P1 is set to default (Coeff-No. 64 = 0.0)
0xFF04	W	Set Zero P2	The zero point value from P2 (Coeff-No. 66) is calculated, that the current measured value equals the floating point number specified.
0xFF06	W	Reset Zero P2	Zero Point Value from P2 is set to default (Coeff-No. 66 = 0.0)
0xFF08	-	-	
0xFF0A	-	-	
0xFF0C	W	Set Zero CH0	The zero point value from CH0 (Coeff-No. 70) is calculated, that the current measured value equals the floating point number specified.
0xFF0E	W	Reset Zero CH0	Zero Point Value from CH0 is set to default (Coeff-No. 70 = 0.0)

Communication protocol Serie30 Page 17/34

5 Description of Keller bus functions


This section describes the functions of the bus protocol for Series 30 transmitters (device *Class.Group* 5.20) using the Keller bus functions (not MODBUS).

Note that all numbers are shown as decimal (not as hex, contradictory to what was described in the MODBUS-chapters)!

Overview:

- F30: Read out calibration (scaling) and information floating-point values
- F31: Write calibration floating-point values
- F32: Read out configurations
- F33: Write configurations
- F48: Initialise devices, whereby the device ID is returned
- F66: Write bus address
- F69: Read out serial number
- F73: Read out current pressure and temperature values in floating-point format
- F74: Read out current pressure and temperature values in integer format
- F95: Zeroing functions

5.1 Example: read pressure value with exception handling

A simple example for reading out a pressure value.

Because only one transmitter is connected, the "transparent" address 250 is used.

To read out pressure functions 73 and 48 are necessary. When the slave replies with error no. 32 (device just recently started up, power on), then this has to be confirmed with function 48. This is helpful to detect current supply interruptions (on the power supply circuit).

Enhancement:

During start-up the device group can be checked via function F48 to ensure that this version is supported.

Further information is available:

- F30: pressure and temperature range
- F69 serial number

Some examples:

	address	requ	ıest	-			resp	pons	se							received value
Read P1	250	250	73	1	161	167	250	73	63	109	186	172	0	26	27	0.9286296 bar
	1	1	73	1	80	214	1	73	63	109	177	83	0	231	97	0.9284870 bar
Read P2	1	1	73	2	81	150	1	73	63	109	178	242	0	119	232	0.9285117 bar
Read	250	250	73	4	162	103	250	73	65	201	184	0	0	224	204	25.21484 °C
TOB1	1	1	73	4	83	22	1	73	65	202	81	128	0	95	54	25.28979 °C
Initialize	1	1	48	52	0		1	48	5	20						FW=5.20-5.50,
																Buffer=10, device
																already initialized

5.2 Function 30: Read coefficient

Request:

DevAddr	30	Nr.	CRC16_H	CRC16_L

Response:

DevAddr 30

Exception errors:

2 if no. > 111

3 if message length incorrect

32 if device is not yet initialised

Note:

Every coefficient can be read in IEEE754 format (floating-point format 4-byte B0 .. B3) via this function.

→ Information on IEEE754: see appendix.

5.2.1 Calibration values

No.	Description of coefficient	Unit					
53	Threshold value of the roof function, (must be >0 if sqrt is used)	bar					
64	Offset of pressure sensor P1, default 0.0	bar					
65	65 Gain factor of pressure sensor P1, default 1.0						
66	Offset of pressure sensor P2, default 0.0	bar					
67	Gain factor of pressure sensor P2, default 1.0						
68	Offset of analogue output						
69	Gain factor of analogue output						
70	Offset of CH0, default 0.0						
71	Gain factor of CH0, default 1.0						
72	Upper threshold value for switching output 1**						
73	Lower threshold for switching output 1**						
78	Upper threshold value for switching output 2**						
79	Lower threshold for switching output 2**						
100 111	free coefficients for customer use						

^{**} no longer supported for devices 5.20-10.XX and newer.

The calibration values can be read and written.

5.2.2 Information values

No.	Description of the coefficient	Unit
80	Minimum pressure of sensor P1	bar
81	Maximum pressure of sensor P1	bar
82	Minimum pressure of sensor P2	bar
83	Maximum pressure of sensor P2	bar
84	Minimum temperature of temperature sensor	°C
85	Maximum temperature of temperature sensor	°C
86	Minimum temperature of sensor P1	°C
87	Maximum temperature of sensor P1	°C
88	Minimum temperature of sensor P2	°C
89	Maximum temperature of sensor P2	°C
90	Minimum value of channel CH0	
91	Maximum value of channel CH0	
92	Pressure for minimum analogue signal *	bar
93	Pressure for maximum analogue signal *	bar
94	Minimum analogue signal*	mA , V
95	Maximum analogue signal*	mA , V

^{*} Required for scaling the analogue output (see below)

The information values are readable only.

The information for No. 94 and 95 may be in mA or V, according to whether the device possesses a voltage output or a current output (see DAC_CTRL function 33).

5.2.3 Scaling of channels CH0, P1 and P2

CH0, P1 and P2 are linearly scalable with zero point and gain factor: Value = gain factor * value + offset Standard values: Offset = 0.0, gain factor = 1.0

It is also possible to influence the offset values via function 95 (see function 95).

The gain factor should be used for calibration purposes only, and not to alter pressure units. The latter operation should always be carried out by the master! In order to represent other pressure units via the analogue output, the unit conversion must be taken into account when scaling the analogue output.

5.2.4 Scaling the analogue output

The analogue output on the Series 30 pressure transmitters can be programmed via the interface. As the two routes *sensor-signal* \rightarrow *digital transformation and digital value* \rightarrow *analogue signal* are calibrated independently at the factory, the analogue output can be set to different pressures or pressure units without requiring recalibration. For this purpose, KELLER offers the free CCS30 software, which provides a convenient means of carrying out this scaling with a PC.

To programme the scaling of the analogue output yourself, proceed as follows:

Function 32 enables you to ascertain whether the device possesses an analogue output. The coefficients required for calculation can be read out using function 30. A new scaling can be programmed using function 31.

Read-out of pressure range for the analogue output:

The following coefficients (K[No.]) must be read out using function 30 in order to calculate the lower and upper limit of the analogue output:

```
\mathbf{A} = (K[92] - K[68]) / K[69]

\mathbf{B} = (K[93] - K[68]) / K[69]
```

Setting a new pressure range for the analogue output:

K[68] and K[69] must be calculated and written into the device using function 31:

$$K[68] = K[92] - ((K[93] - K[92]) / (B - A)) * A$$

 $K[69] = (K[93] - K[92]) / (B - A)$

Whereby:

K[x]: Coefficient with the corresponding number $[x] \rightarrow$ see function 30

A: Pressure in bar at which the signal K[94] is to be output

B: Pressure in bar at which the signal K [95] is to be output

Other pressure units are to be converted into bar.

5.3 Function 31: Write coefficient

Request:

DevAddr	31	Nr.	В3	В2	В1	в0	CRC16_H	CRC16_L

Response:

DevAddr	31	0	CRC16_H	CRC16_L

Exception errors:

- 2 If no. is not 53, 64 .. 73, 78, 79 or 100 .. 111
- 3 If message length is incorrect
- 32 If device has not yet been initialised

Note:

Information on scaling of the channels: See functions 73 and 95. Information on which channels are active: See function 32 CFG_P, CFG_T and CFG_CH0.

5.4 Function 32: Read configuration

Request:

DevAddr	32	Nr.	CRC16_H	CRC16_L

Response:

DevAddr	32	Dates	CRC16_H	CRC16_L

Exception errors:

- 2 If Nr. > 13
- 3 If message length is incorrect
- 32 If device has not yet been initialised

Remark:

See description function 33

5.5 Function 33: Write configuration

Request:

Response:

	DevAddr	33	0	CRC16_H	CRC16_L
--	---------	----	---	---------	---------

Exception errors:

- 2 If Nr. > 13
- 3 If message length is incorrect
- 32 If device has not yet been initialised

Remark:

With functions 32 and 33 one can read and write some configuration of the device. This functions provide a single byte access and replace function 100 / 101 for the devices with firmware Class. Group - Year. Week = 5.20-5.50 und earlier.

Description:

0 CFG_P Active pressure channels (high priority): Bit 1: P1 Bit 2: P2 1 CFG_T Active Temperature channels (low priority): Bit 3: T (Temperature sensor) Bit 4: TOB1 (Temperature of pressure sensor P1) Bit 5: TOB2 (Temperature of pressure sensor P2) 2 CFG_CH0 Configuration of CH0 (Calculated channel): Byte value (decimal) 0: inactive 1: Difference P1 – P2 2: Difference P2 – P1	Read	Write X Device has to be
Bit 1: P1 Bit 2: P2 1 CFG_T Active Temperature channels (low priority): Bit 3: T (Temperature sensor) Bit 4: TOB1 (Temperature of pressure sensor P1) Bit 5: TOB2 (Temperature of pressure sensor P2) 2 CFG_CH0 Configuration of CH0 (Calculated channel): Byte value (decimal) 0: inactive 1: Difference P1 – P2 2: Difference P2 – P1		X Device has to be
1 CFG_T Active Temperature channels (low priority): Bit 3: T (Temperature sensor) Bit 4: TOB1 (Temperature of pressure sensor P1) Bit 5: TOB2 (Temperature of pressure sensor P2) 2 CFG_CH0 Configuration of CH0 (Calculated channel): Byte value (decimal) 0: inactive 1: Difference P1 – P2 2: Difference P2 – P1		Device has to be
Bit 3: T (Temperature sensor) Bit 4: TOB1 (Temperature of pressure sensor P1) Bit 5: TOB2 (Temperature of pressure sensor P2) Configuration of CH0 (Calculated channel): Byte value (decimal) 0: inactive 1: Difference P1 – P2 2: Difference P2 – P1		Device has to be
Bit 4: TOB1 (Temperature of pressure sensor P1) Bit 5: TOB2 (Temperature of pressure sensor P2) 2 CFG_CH0 Configuration of CH0 (Calculated channel): Byte value (decimal) 0: inactive 1: Difference P1 – P2 2: Difference P2 – P1	~	
Bit 5: TOB2 (Temperature of pressure sensor P2) 2 CFG_CH0 Configuration of CH0 (Calculated channel): Byte value (decimal) 0: inactive 1: Difference P1 – P2 2: Difference P2 – P1	~	
2 CFG_CH0 Configuration of CH0 (Calculated channel): Byte value (decimal) 0: inactive 1: Difference P1 – P2 2: Difference P2 – P1	~	
0: inactive 1: Difference P1 – P2 2: Difference P2 – P1	*	
1: Difference P1 – P2 2: Difference P2 – P1		
2: Difference P2 – P1		rootostad /
		restarted (power
		Off/On).
3: Square root calculation sqrt(P1), set coefficient Nr. 53 > 0		Please note that
4: Square root calculation sqrt(P2), set coefficient Nr. 53 > 0		for some settings
5: Square root calculation sqrt(P1 – P2) , set coefficient Nr. 53 > 0		there are more
6: Square root calculation sqrt(P2 – P1), set coefficient Nr. 53 > 0		configurations
11: Absolute value abs(P1)		needed.
12: Absolute value abs(P1 – P2)		
13: Line pressure compensated differential pressure (only at factory, add. parameters)		
14: straight line curve fitting of P1 (only if P2 is not active, 5.20-12.24 and earlier)		
3 CNT_T Temperature measurement interval in seconds.	<u> </u>	Y
4 CNT_TCOMP Value of Bit 0 3 (LowNibble): CNT_TCOMP	~	~
After CNT_T * CNT_TCOMP seconds a temperature compensation will be performed. LP-FILTER Value of Bit 4 7 (HighNibble):Low pass filter for P1 and P2. LowpassFilter = 2 ^{Bit 4} ^{B7}		
LP-FILTER Value of Bit 4 7 (HighNibble):Low pass filter for P1 and P2. LowpassFilter = 2 ^{Bit 4 B7} The formula for the low pass filter is given as:		
$P_{n+1} = \frac{(2^{LowpassFilter} - 1) \cdot P_{n-1} + P_n}{2^{LowpassFilter}}$ where:		
$r_{n+1} = {2^{LowpassFilter}}$ where.		
P _{n+1} : new filtered value		
P _n : actual measured value		
P _{n-1} : old filtered value		
5		
6		
7 FILTER Filter setting for one conversion:		→
Bit 0: Adaptive filter for P1 and P2 (on / off)		
Bit 1: Low pass filter for T, TOB1 and TOB2 (on / off)		
Bit 2 Bit 4: Over sampling ration OSR = $2^{\wedge(8+Bit\ 2\ 4)}$		
Bit 5 6: Amount of samples per averaging: 03 = 1, 2, 4 or 8 values.		
Factory settings see FILTER_ORG.		
8		
9 DAC Analogue output:	~	(✓ : Bit4)
Bit 0: Milli Amperes output (4 20mA)		5.20-10.40 and earlier.
Bit 1: Voltage output		Change of Bit 4
Bit 4 = 1: P1 is linked to the analogue output		allowed to link the
Bit 4 = 0: CH0 is linked to the analogue output		analogue output either
Scaling see function 30/31		to CH0 or P1
10 UART UART settings:	~	~
Bit 0 3: Baud rate		Device has to be
Baud rate Value = 0: 9'600baud		restarted (power
Baud rate Value = 1: 115'200baud		Off/On).
Bit 4: Parity selection. 0: no Parity, 1: Parity enable		
Bit 5: Parity mode. 0: odd parity, 1: even parity		
11 FILTER_ORG Factory setting for filter value.	~	×
12 STAT Status of the measurement. See function 73 for details.	~	×
13 DEV_ADDR Device address. Range: 1 255.	~	✓
14 P-Mode Type of sensor and calibration 0: PR (relative), 1: PA (absolute), 2: PAA (absolute)	~	

Nr. 14: Version 5.20-12.28 and earlier

5.6 Function 48: Initialise and release

Request:

DevAddr	48	CRC16_H	CRC16_L
	_		

Response:

DevAddr	48	Class	Group	Year	Week	BUF	STAT	CRC16_H	CRC16_L

Exception error:

3 If message length is incorrect

Note:

Each time the device is switched on by applying the supply voltage or after a break in the power supply, the device must be initialised via this function. Calling a different function will lead to exception error 32.

The following information is returned:

Class Device ID code

5: Series 30 digital pressure transmitter (33, 35, 36, 39)

Group Subdivision within a device class

Series 30 transmitter from 1999 or later
 Series 30 transmitter from 2002 or later

The differences between these devices are defined in italics in the functions.

Year, Week Firmware version

BUF Length of the internal receive buffer

STAT Status information

0: Device addressed for first time after switching on.

1: Device was already initialised

5.7 Function 66: Write and read new device address

Request:

Response:

			_	
DevAddr	66	ActAddr	CRC16_H	CRC16_L

Exception error:

- 3 If message length is incorrect
- 32 If device is not yet initialised

Note:

This function programmes the device addresses to NewAddr. The address is returned in ActAddr as confirmation. It is to be ensured that the new address NewAddr is not already in use by another bus user.

Permissible addresses: 1 .. 249. Address 250 is transparent. This means that every device, irrespective of the set address, will respond to address 250. Consequently, *transparent* DevAddr = 250 may only be used in stand-alone operating mode!

For the purpose of reading the device address when the address is not known, for example, the value 250 is transferred as DevAddr and the value 0 is transferred as NewAddr. The current address is then returned in response.

5.8 Function 69: Read serial number

Request:

DevAddr	69	CRC16_H	CRC16_L

Response:

 <u> </u>							
DevAddr	69	SN3	SN2	SN1	SN0	CRC16_H	CRC16_L

Exception errors:

- 3 If message length is incorrect
- 32 If device is not yet initialised.

Note:

The serial number is allocated at the factory. It consists of 4 bytes unsigned integer and is calculated as follows:

5.9 Function 73: Read value of a channel (floating point)

Request:

DevAddr	73	CH	CRC16_H	CRC16_L

Response:

_									
Ī	DevAddr	73	В3	B2	B1	В0	STAT	CRC16_H	CRC16_L

Exception errors:

- 2 If CH > 5
- 3 If message length is incorrect
- 32 If device is not yet initialised

Note:

A device can measure up to five signals (channels):

Two independent pressure sensors, P1 and P2. Plus the temperatures of pressure sensors TOB1 and TOB2 respectively. The temperatures of the pressure sensors (TOB1, TOB2) are required for temperature compensation of the pressure signal. A temperature sensor (T) can also be measured.

Please use function 32 to get the information which Channels are active.

CH0 is a calculated channel whose mode of functioning is defined in function 100.

On a standard pressure transmitter, only channels P1 and TOB1 are available. You can read out which channels are active via function 100.

The measured value is returned in IEEE754 format (4-byte B0 ... B3).

CH	Name	Description	Unit
0	CH0	Calculated channel (see function 32,33,100)	*
1	P1	Pressure from pressure sensor 1	bar
2	P2	Pressure from pressure sensor 2	bar
3	Т	Additional temperature sensor	°C
4	TOB1	Temperature of pressure sensor 1	°C
5	TOB2	Temperature of pressure sensor 2	°C

^{*} Dependent on definition in function 32 or 100.

The STAT byte contains the current status.

Bit position	.7	.6	.5	.4	.3	.2	.1	.0
Name	/STD	ERR2	TOB2	TOB1	Т	P2	P1	CH0

A set /STD bit indicates whether the transmitter is in Power-up mode, otherwise it is in Standard mode.

A set ERR2 bit denotes that a computation error has occurred in the calculation process for the analogue output. This occurs if the analogue Signal is in saturation (depends on the scaling).

A set CH0, P1, P2, T, TOB1, TOB2 bit indicates that a measuring or computation error has occurred in the channel concerned.

For details in error-handling see chapter Error handling and recognition!

5.10 Function 74 : Read value of a channel (32bit integer)

Request:

DevAddr	74	CH	CRC16_H	CRC16_L

Response:

DevAddr	74	В3	B2	В1	в0	STAT	CRC16_H	CRC16_L

Exception errors:

- 2 If CH > 5
- 3 If message length is incorrect
- 4 *Class.Group Year.Week* = 5.20-5.50 and earlier: If a channel is in overflow/underflow/inactive state or the data is invalid.

For newer versions: overflow/underflow/inactive state is showed by value. See Chapter 6.3

32 If device has not yet been initialised

Note:

Same as function 73, but values as 4-byte integer (long) B0 .. B3, where B3 is MSByte. The resolution is reduced to 0.1mbar.

Unit: CH0: *10-5

P1 and P2: Pascal (1Pa = 10^{-5} bar).

T, TOB1 and TOB2: 0.01°C

Status-Byte (STAT): See function 73.

For details in error-handling see chapter Error handling and recognition!

5.11 Function 95 : Commands for setting the zero point

Requests:

Request a:

DevAddr 95	5 CMI	CRC16_H	CRC16_L
------------	-------	---------	---------

Request b with setpoint:

 •									
DevAddr	95	CMD	B3	B2	B1	B0	CRC16_H	CRC16_L	1

where B3:B0: Floating-piont number IEEE754 format (4-byte B0 ... B3) for the setpoint.

Response:

	l ₋ _	_		
DevAddr	195	0	CRC16 H	CRC16 L
			_	_

Exception errors:

- 1 If in Power-up mode
- 2 If CMD invalid
- 3 If message length incorrect
- 32 If device is not yet initialised

Note:

The following actions can be carried out with this function:

CMD	Meaning
0	Set zero point of P1
1	Reset zero point of P1 to standard value
2	Set zero point of P2
3	Reset zero point of P2 to standard value
4	
5	
6	Set zero point of CH0
7	Reset zero point of CH0 to standard value

CMD 0, 2, 6:

Zero point values for pressure channels P1, P2 and the calculated channel CH0. These values can also be read via function 30 and written via function 31.

Request a: The zero point is calculated such that the current measured value = 0.0.

Request b: The zero point is calculated such that the current measured value equals the setpoint (B3:B0).

CMD 1, 3, 7: Reset zero point to factory setting

The zero point values are reset to 0.

5.12 Function 100 : Read configuration

Request:

DevAddr	100	Index	CRC16_H	CRC16_L

Response:

DevAddr	100	PARA0	PARA1	PARA2	PARA3	PARA4	CRC16_H	CRC16_L

Exception errors:

- 2 If index > 8
- 3 If message length is incorrect
- 32 If device is not yet initialised

Note:

This function supplies the information about the configuration of the device. Please use Function 32 instead of this function for devices of *Class.Group 5.20-5.24* and earlier. With function 32/33 you have access to a single parameter instead of all five parameters.

A pressure transmitter can read two independent pressure sensors (P1 and P2), plus the temperatures of the respective pressure sensors (T0B1 and T0B2) and an independent temperature (T).

Index	Para0	Para1	Para2	Para3	Para4
0		UART	FILTER_ORG		
2	CFG_P	CFG_T	CFG_CH0	CNT_T	High Nibble Low Nibble LP-Filter CNT_TCOMP
3	(SWITCH*)		FILTER		DAC

^{*:} Switch is no longer supported with firmware 5.20-10.40 and earlier

For details see description in function 32 / 33.

For change the configuration use function 33.

6 Appendix

6.1 Interface converter

The serial RS232 interface or the USB interface can be used for connection to a PC. KELLER offers converters for this purpose. Various other products are commercially available, however. The following requirements apply when working with KELLER software:

- The converter must control transmit / receive switch-over automatically.
- KELLER converters feature a hardware echo, i.e. the transmitted message is received again immediately as an echo. This echo is required by some KELLER software programmes.

6.2 floating-point format IEEE754

As data transmission is effected byte-wise (8-bit data), the floating-point values are represented as follows:

B0: Bit 0..7; B1: Bit 8..15, B2: Bit 16..23, B3: Bit 24..31

Representation in accordance with IEEE754:

B3 DATA H (Reg. 0)	B2 DATA L (Reg. 0)	B1 DATA H (Reg. 1)	B0 DATA L (Reg. 1)	
b <mark>01000001</mark> (0x41)	b <mark>0</mark> 0101001 (0x29)	b <mark>00000010</mark> (0x02)	b <mark>11011110</mark> (0xDE)	Valid Number
b <mark>01111111</mark> (0x7F)	b <mark>10000000</mark> (0x80)	b <mark>00000000</mark> (0x00)	b <mark>00000000</mark> (0x00)	∞ / Overflow
b <mark>11111111</mark> (0xFF)	b <mark>10000000</mark> (0x80)	b <mark>00000000</mark> (0x00)	b <mark>00000000</mark> (0x00)	-∞ / Underflow
b <mark>x1111111</mark> (0xFF)	b <mark>11111111</mark> (0xFF)	b <mark>11111111</mark> (0xFF)	b <mark>11111111</mark> (0xFF)	Not a Number

1 bit Sign + 8 bit Exponent + 23 bit Mantis = 32 bit

Calculation of the value transmitted:

$$V = (-1)^{S} \cdot (1.0 + \frac{M}{2^{23}}) \cdot 2^{E - 127}$$

0 = 0

10000010 = 130

01010010000001011011110 = 2687710

$$-10^{\circ}$$
 (1.0 + 2687710 /8388608) * 2^{130} -127 = 10.5631999969482421875

These values directly show the value in the requested unit [bar] or [°C].

⇒ 10.5632 bar

Usage of Keller software:

If you use the DLL which is available from KELLER, you do not need to carry out conversion, as this is encapsulated in the DLL. If you wish to address the devices directly, however, you must convert the individual bytes into a floating-point value.

To obtain a floating-point value from the individual bytes, proceed as follows:

- 1. Define data structure in which an array of 4 bytes and a 32-bit floating-point value is defined at the same memory location.
- 2. Write the bytes into the byte array.
- 3. Read out the floating-point value.

You do not need to carry out any actions, therefore, as the computer attends to interpretation. Some microcontrollers have a different data structure for floating-point values. In such cases, adaptation is necessary.

6.3 Error handling and recognition

The electronic unit can read five signals: pressure values from two pressure sensors (P1, P2), temperature values from both of these pressure sensors (TOB1, TOB2) and temperature value from one additional temperature sensor (T). Additionally, out of these values an other value can be calculated (CH0). These values are described as channels in this documentation. To check if the channels are active one may use function F32 (or MODBUS addresses 0x0204-0x0206) (refer to according chapter).

Measuring range

The signals are being measured with an analogue to digital converter (ADC). The measuring range is limited upwards and downwards

For the pressure signals P1 and P2 the limitation is depending on the compensated pressure range, which can be read out with function 30 (as well as MODBUS function 3 [range 0x03xx] from version 5.20-10.x and later).

Readable range: (pressure range minimum – 10%) up to (pressure range maximum + 10%)

Is the pressure below or above this range, then the bit in the Status-Byte will be set. The measured value itself is no longer valid when the Status-Bit is set.

Dependencies

P1 and P2 are temperature-compensated and therefore they are depending on temperature. Channel CH0 is always depending on P1 and / or P2 and on a temperature channel. Is there a fault in one of these dependencies so the depending channel will follow accordingly.

6.3.1 What is new in version 5.20-10.40 (and later)

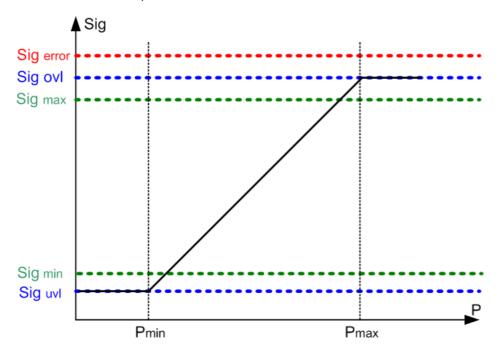
Version 5.20-10.40 (available end of 2010) and later will display additionally to the Status-Bit also an error in the value itself. The format follows the special indications according to floating point arithmetic: NaN, +Inf (ovl), -Inf (uvl). See chapter floating-point Format IEEE754.

	CH0	P1 / P2	TOB1 / TOB2
NaN	Dependency error (P1, P2 = NaN or +/-Inf)	+/-Inf in compensating T-channel	-
+Inf	-	ADC value out of range (Overflow)	ADC value out of range (Overflow) or T > 300 °C
-Inf	-	ADC value out of range (Underflow)	ADC value out of range (Underflow) or T < - 70°C
0.000	Sqrt: (p < Pcutoff)	-	-

The values NaN, +Inf and -Inf are defined in the IEEE754 standard and are described in chapter floating-point format IEEE754.

NaN is also shown, when the requested channel is not active. In this case, the Staus-Bit is not set.

Special Integer Values (F74, F3):


	32bit signed integer	16bit signed integer
NaN, +Inf	2147483647 (0x7FFFFFF)	32767 (0x7FFF)
-Inf	-2147483648 (0x80000000)	-32768 (0x8000)

Communication protocol Serie30 Page 31/34

6.3.2 Analogue Output

The analogue output has to transfer the error states described in the former chapter and therefore additional analogue states were introduced. The graph below shows the transfer function between pressure (in this example the analogue output is a function of P – however it could also be some other mathematical function using CH0). The black line showes the transfer function for a positive DAC-gain. The Sig_{error} is independent of any scaling function and represents a internal error state (source has NaN, see table above).

The following table shows possible analogue values for different hardware types:

	0-10 V, (05V)	0-2.5 V	4-20 mA	Dig. represantive
Sig _{error}	11.6 V	2.9 V	22.5 mA	NaN
Sig ovl	11 V	2.75 V	21.8 mA	+Inf
Sig _{max}	10 V	2.5 V	20 mA	value
Sig _{min}	0 V	0 V	4 mA	value
Sig _{uvl}	-1 V	-0.3 V	3.3 mA	-Inf

6.4 Calculation of the CRC16 checksum

The checksum can either be calculated or derived from a table. Here is an example of CRC16 calculation in C:

```
// CRC-16 calculation in C
// Calculation of CRC-16 checksum over an amount of bytes in the serial buffer.
// The calculation is done without the 2byte from crc16 (receive-mode).
// SC_Buffer[]: Byte-Buffer for the serial interface. Type: unsigned char (8bit)
// SC_Amount : Amount of Bytes which should be transmitted or are received (without CRC16)
void CalcCRC16(unsigned char* CRC_H, unsigned char* CRC_L)
   // locals
   unsigned int Crc;
   unsigned char n, m, x;
                                                     START
   // initialisation
   Crc= 0xFFFF;
                                                   CRC := $FFFF
   m= SC_Amount;
                                                     N := 0
   x = 0;
   // loop over all bits
                                                CRC := CRC xor DATA[N]
   while(m>0)
       Crc^= SC_Buffer[x];
                                                     M := 0
       for(n=0; n<8; n++)
          if(Crc&1)
                                                                yes
                                                    CRC mod 2
             Crc>>= 1;
             Crc^= 0xA001;
                                                   CRC := CRC div 2
                                                                      CRC := CRC div 2
          else
             Crc>>= 1;
       }
                                                                     CRC := CRC xor $A001
       m--;
       x++;
   // result
                                                    M := M + 1
   *CRC_H= (Crc>>8)&0xFF;
   *CRC_L= Crc&0xFF;
}// end CalcCRC16
                                                     M < 8
                                                    N := N + 1
                                             yes
                                                  N < Message
                                                     STOP
```

This results in the following calculation for function 48 with device address 250: CRC16_H= 4, CRC16_L= 67.

Examples showing use based on a table are to be found in the MODBUS documentation at: http://www.modbus.org

6.5 Changes

- Document version 2.1, 19. October 2005: New function 32 and 33 for device *Class.Group Year.Week = 05.24* and earlier, F75: cancelled.
- Document version 2.2, 16. August 2006:

Description for function 32/33 revised. Function 101 added. Formula for scaling of the analogue output corrected.

• Document version 3.0, 20. December 2010:

Added Modbus (chapter 4) support for Class. Group=5.20-10.XX

Modbus Implementation of Functions (3,6,8 and 16) with support of all functions covered by the Keller Bus protocol. Added chapter error handling and recognition

Modified chapter "floating-point format IEEE754"

• Document version 3.1, 14. August 2012: Added changements of *Class.Group=5.20-12.28*

6.6 Software versions

An overview of the realeased versions for Class. Group 5.20:

Version	Date of	Major changements		
Year.Week	production			
2.40	20022003	Base version		
3.50	2003 2006	- CH0: add option Linepressure compensation		
5.50	2006 2100	- Hardware redesign to increase robustness under EMC		
		- add Lowpass Filter and adaptive Filter for pressure channels		
		- Switch2 option canceled		
		- only two temperature channels possible: TOB1 and TOB2 or T		
		- sqrt calculation without scaling factor		
		- add function F32 and F33 for configuration access		
		known issue: CRC of exception code using MODBUS F3 is wrong		
10.40	20112012	- Improoved errorhandling: see error handling and recognition		
		- Switch option: canceled		
		- CH0: Cuve fitting added (CFG_CH0= 14), SF6 calculation: canceled (CFG_CH0=710)		
		MODBUS protocol:		
		- CRC16 in case of an exception corrected		
		- F3: access to all registers as in the KELLER protocol (Information and config values)		
		 Serial buffer increased from 10 to 13Bytes → readout of 2 values possible in one task 		
		- F6, F8, F16 added: Configuration an calibration also with MODBUS		
		known issue:		
		- MODBUS F3 0x00100x001A: not usable		
		- CH0 scale (Coeff 70 and 71) must be default (Nr.70 = 0.00, Nr. 71 = 1.00)		
12.28	Aug. 2012	- CH0 scaling: corected		
		- MODBUS F3:		
		0x020E, 0x020F: Read firmware version added		
		Int 16Bit values 0x0010 0x0015 compatible with Version 5.20-5.50		
		0x0020 0x002A: integer 32bit for prozessvalues added		

6.7 Support

We are pleased to offer you support in implementing the protocol. Use our free PC-software CCS30 for communication and configuration. Also divers for LabView, C#, etc are aviable on our website: http://www.keller-druck.com

KELLER AG für Druckmesstechnik

St. Gallerstrasse 119 • CH-8404 Winterthur

Tel: ++41 52 235 25 25 http://www.keller-druck.com

Communication protocol Serie30 Page 34/34